1.

Use L'Hospital's rules to evaluate limits having indeterminate form.
(I, III, VI)

2.

Use algebraic and numerical techniques for evaluating integrals. (II)

3.

Use integration in applied problems. (IV, V)

4.

Determine the convergence or divergence of an improper integral. (III)

5.

Analyze curves in the plane defined using parametric and polar
equations. (V)

6.

Determine the convergence or divergence of sequences and series having
numerical terms. (VI)

7.

Find a power series representation for a given function and determine
its domain. (VI)

8.

Extend the operations of differentiation and integration to functions
defined by a power series. (VI)

9.

Find a polynomial which approximates a given function to a specified
degree of accuracy on a specified interval. (VI)

10.

Perform operations on vectors. (VII)

11.

Use vector operations in applied problems. (VII)

12.

Use technology when appropriate (IV, V)

