Official Course
Description: MCCCD Approval: 4-25-95 |
|||
AST111
1996 Fall – 2010 Summer II |
LEC |
3 Credit(s) |
3 Period(s) |
Introduction
to Astronomy I |
|||
Introduction
to astronomy for the non-science major. History of astronomy, properties of
light, instruments, the solar system and nearby stars. Prerequisites: MAT092 or equivalent. |
|||
Go to Competencies Go to Outline
MCCCD
Official Course Competencies: |
|
|
|
AST111 1996 Fall –
2010 Summer II |
Introduction to Astronomy I |
1.
|
Apply the scientific method and other critical thinking
models to astronomical phenomena for hypotheses development, experimental
design, data acquisition, and data analysis. (I- XIII) |
2.
|
Explain the application of fundamental physical principles
to various astronomical phenomena. (I-XIII) |
3.
|
Outline the history of astronomical thought. (I, II) |
4.
|
Describe in terms of energy, wavelength, and frequency the
various portions of the electromagnetic spectrum. (III) |
5.
|
Describe instruments used to detect radiation from the
various portions of the electromagnetic spectrum. (III, IV) |
6.
|
Compare the physical properties of the earth with its
moon. (V, VI) |
7.
|
Give an overview of the components of the solar system.
(VII) |
8.
|
Compare and contrast the physical properties of the major
planets. (VIII-X) |
9.
|
Describe the minor components of the solar system. (X) |
10.
|
Explain possible models of solar system formation. (XI) |
11.
|
Describe the physical properties of the sun. (XII) |
12.
|
Compare solar system dimensions with nearby stars
dimensions. (II, XIII) |
Go to Description Go to top of
Competencies
MCCCD
Official Course Outline: |
||
|
||
AST111 1996 Fall –
2010 Summer II |
Introduction to Astronomy I |
|
|
||
I. Early History of
Astronomical Thought A. Sky at night B. Astronomical scales C. Celestial sphere D. Apparent motions of
celestial objects E. Eclipses F. Geocentric universe G. Ancient astronomy II. Birth of Modern
Astronomy A. Scientific method B. Heliocentric universe C. Copernican revolution D. Impact of Galileo, Kepler, and Newton E. Solar system dimensions III. Radiation A. Evidence of the wave
nature of radiation B. Electric/magnetic field
relationships C. Electromagnetic spectrum
D. Evidence of the particle
nature of radiation E. Radiation laws and the
Doppler effect F. Model of the atom G. Spectral line formation
and analysis IV. Telescopes A. Optical telescopes B. Resolution C. Radio telescopes and interferometry D. Full-spectrum radiation
detectors V. Earth A. Bulk properties B. Hydrosphere C. Atmosphere D. Magnetosphere E. Interior F. Earth-moon effects G. Plate tectonics VI. EarthÕs
Moon A. Bulk properties B. Orbit and rotation C. Surface features D. Cratering
and volcanism E. Surface composition F. Interior G. Origin and history H. Exploration VII. Overview of the Solar
System A. Overall layout B. Terrestrial and Jovian
planets C. Planetary configurations
D. Interplanetary debris VIII. Comparative Planetology: Terrestrial Planets A. Bulk properties B. Orbit and rotation C. Surface features D. Cratering
and volcanism E. Surface composition F. Internal structure G. Atmosphere H. Temperatures I. Magnetic properties J. Moons K. Spacecraft exploration L. Possibilities of life IX. Comparative Planetology: Jovian Planets A. Bulk properties B. Discovery C. Orbit and rotation D. Composition E. Atmospheric features F. Internal structure G. Temperatures H. Magnetic properties I. Ring structure J. Moons K. Spacecraft exploration X. Pluto and Solar System
Debris A. Discovery of Pluto B. Bulk properties of Pluto
C. Moon of Pluto D. Origin of Pluto E. Asteroids F. Comets G. Meteoroids XI. Formation of the Solar
System A. Role of modeling B. Solar system formation
models C. Modeling problems XII. Sun A. Bulk properties B. Interior C. Visible surface D. Atmosphere E. Solar activity F. Energy production XIII. Nearby Stars A. Distances B. Motions C. Magnitudes |
|
|